Repeated Measures Split-Plot In Time Analysis

Treatments:

Blocks (B) Whole plots (W) Split plots (S)

Split is conceptual, as treatment is applied to entire plot (or experimental unit) which is sampled in time (repeated measure).

Linear additive model:

Split-Plot in Time

Grass-Legume Mixture Example

Treatments:

Blocks (B) 4 reps

Treatment - (T) 4 grass-legume mixtures

- 1) no legume control
- 2) birdsfoot trefoil
- 3) alfalfa
- 4) kura clover

Date - Repeated Measure -(D) 4 harvest dates

- 1) spring
- 2) early summer
- 3) mid summer
- 4) late summer

Split-Plot in Time Grass-Legume Mixture Example

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Blk	3	505996.5	168665.5	1.22	
Trt	3	40986209	13662070	253.96	<.0001
Error a	9	484157.4	53795.3	0.39	
Date	3	2.41E+08	80241422	578.19	<.0001
Trt*Date	9	15762104	1751345	12.62	<.0001
Error b	36	4996075	138779.9		

This analysis is OK as long as our assumptions hold. What happens if repeated measurements are correlated?

Split-Plot in Time Grass-Legume Mixture Example

trt*date Effect Sliced by date for yield

Date	DF	SS	Mean Square	F Value	Pr > F
1	3	36884379	12294793	88.59	<.0001
2	3	7402380	2467460	17.78	<.0001
3	3	9688544	3229515	23.27	<.0001
4	3	2773011	924337	6.66	.00011

$$SED = \sqrt{\frac{2[(4-1)(138779.9) + 53795.3]}{4(4)}} = 242.42$$

$$LSD = 2.028(242.42) = 491.63$$

Grass-Legume Mixture Example									
Differences of Least Squares Means									
Effect	trt	date	_trt	_date	Estimate	Error	DF	t Value	Pr > t
trt*date	Alfalfa	1	Control	1	3677.25	242.42	36	15.17	<.0001
trt*date	Alfalfa	1	Kura	1	1288	242.42	36	5.31	<.0001
trt*date	Alfalfa	1	Trefoil	1	-80	242.42	36	-0.33	0.7433
trt*date	Control	1	Kura	1	-2389.25	242.42	36	-9.86	<.0001
trt*date	Control	1	Trefoil	1	-3757.25	242.42	36	-15.5	<.0001
trt*date	Kura	1	Trefoil	1	-1368	242.42	36	-5.64	<.0001
trt*date	Alfalfa	2	Control	2	1723.75	242.42	36	7.11	<.0001
trt*date	Alfalfa	2	Kura	2	1123	242.42	36	4.63	<.0001
trt*date	Alfalfa	2	Trefoil	2	296.25	242.42	36	1.22	0.2296
trt*date	Control	2	Kura	2	-600.75	242.42	36	-2.48	0.018
trt*date	Control	2	Trefoil	2	-1427.5	242.42	36	-5.89	<.0001
trt*date	Kura	2	Trefoil	2	-826.75	242.42	36	-3.41	0.0016
trt*date	Alfalfa	3	Control	3	2135.5	242.42	36	8.81	<.0001
trt*date	Alfalfa	3	Kura	3	641.25	242.42	36	2.65	0.012
trt*date	Alfalfa	3	Trefoil	3	759.5	242.42	36	3.13	0.0034
trt*date	Control	3	Kura	3	-1494.25	242.42	36	-6.16	<.0001
trt*date	Control	3	Trefoil	3	-1376	242.42	36	-5.68	<.0001
trt*date	Kura	3	Trefoil	3	118.25	242.42	36	0.49	0.6287
trt*date	Alfalfa	4	Control	4	1077	242.42	36	4.44	<.0001
trt*date	Alfalfa	4	Kura	4	767.5	242.42	36	3.17	0.0031
trt*date	Alfalfa	4	Trefoil	4	938	242.42	36	3.87	0.0004
trt*date	Control	4	Kura	4	-309.5	242.42	36	-1.28	0.2099
trt*date	Control	4	Trefoil	4	-139	242.42	36	-0.57	0.5699
trt*date	Kura	4	Trefoil	4	170.5	242.42	36	0.7	0.4864

Comparing Two Sample Means Standard Errors (of the difference)

For uncorrelated measurements:

$$S_{\bar{d}} = \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 Business as usual

For correlated measurements:

$$S_{\overline{d}} = \sqrt{(s_p^2 - \text{cov}_{12}) \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$
 Houston we have a problem

Repeated Measures Covariance

$$\sigma_{XY}^2 = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{n - 1}$$

Repeated Measures Correlation

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2}$$

$$r = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y}) / (n - 1)}{\sqrt{\sum (X_i - \overline{X})^2 / (n - 1)} \sqrt{\sum (Y_i - \overline{Y})^2 / (n - 1)}}$$

Repeated Measures Standard Error of a Mean Difference Correlated Measures

$$S_{\overline{d}} = \sqrt{\frac{2(s_p^2 - s_{12})}{n}}$$

$$S_{\bar{d}} = \sqrt{S_p^2 - S_{12} \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}$$

$$S_{\overline{d}} = \sqrt{\left(\frac{S_1^2 - S_{12}}{n_1} + \frac{S_2^2 - S_{12}}{n_2}\right)}$$

Repeated Measures

Variance-Covariance Matrix

$$Var\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} Var[Y_1] & Cov[Y_1, Y_2] & Cov[Y_1, Y_3] \\ Cov[Y_2, Y_1] & Var[Y_2] & Cov[Y_2, Y_3] \\ Cov[Y_3, Y_1] & Cov[Y_3, Y_2] & Var[Y_3] \end{bmatrix}$$

Repeated Measures Univariate Approaches

Split-Plot in Time Assumptions:

- 1. Variances are homogenous over time
- 2. All pairs of observations:
 - not correlated, or
 - equally correlated, or
 - have same variance of a difference (Huynh-Feldt Condition)

Repeated Measures Univariate Approaches

Valid when:

$$Var\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \sigma^2 \end{bmatrix}$$

or

$$Var\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} \sigma^2 + \sigma_1 & \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma^2 + \sigma_1 & \sigma_1 \\ \sigma_1 & \sigma_1 & \sigma^2 + \sigma_1 \end{bmatrix}$$

Split-Plot in Time Adjusting df

Source	df	adjusted df
Blk	3	
Trt	3	
Error a	9	
Date	3	1
Trt*Date	9	3
Error b	36	12

Conservative test for repeated factor – divide df for each factor associated with time (subplots) by the df for the main effect of the subplot treatment.

Split-Plot in Time Grass-Legume Mixture Example Adjusted Subplot df

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Blk	3	505996.5	168665.5	1.22	
Trt	3	40986209	13662070	253.96	<.0001
Error a	9	484157.4	53795.3	0.39	
Date	1	2.41E+08	2.41E+08	578.19	<.0001
Trt*Date	3	15762104	5254035	12.62	0.0005
Error b	12	4996075	416339.6		

Reducing the subplot df changes the F-distribution to which the calculated F values are compared making these tests more conservative.

Repeated Measures Univariate Approaches

Other Univariate Approaches:

- Analysis by Time
- Analysis of Differences
- Response Indices

Repeated Measures

Response Index Example – Corn Residue

Treatments:

Blocks (B) 4 reps

Tillage (T) 2

1) Chisel plow

2) No-till

Days - Repeated Measure -(D) 9

7, 14, 21, 29, 43, 57, 71, 83, 90

Variable measured

Percent initial residue biomass remaining

Data from Alex Cleverenga (2020)

Repeated Measures

Response Index Example – Corn Residue

SAS code for split-plot in time analysis

```
proc glm;
class block tillage days;
model prctmass = block tillage
  block*tillage days tillage*days;
test h=tillage e= block*tillage;
means days / lsd linestable;
lsmeans tillage*days;
ods output lsmeans=means;
run;
```

Repeated Measures

Response Index Example – Corn Residue

ANOVA for split-plot in time analysis

Source	DF	Type I SS	Mean Square	F Value	Pr > F
Block	2	421.52062	210.76031	4.66	
Tillage	1	4115.41670	4115.41670	14.03	0.0645
Error a	2	421.33734	210.66867	4.65	
Days	8	20494.10819	2561.76352	56.59	<.0001
Tillage*Days	8	482.81903	60.35238	1.33	0.2644
Error b	31	1403.37879	45.27028		

- Tillage is important (large F combined with low error df support using $\alpha = 0.10$)
- Days of incubation are also important
- There is no interaction between tillage and days ∴ the effect of tillage was consistent over time

Repeated Measures

Response Index Example – Corn Residue

Mean	N.I	
	N	Days
93.798	6	7
76.204	6	14
74.287	6	21
69.723	6	29
53.764	6	43
42.579	6	57
38.61	6	90
37.546	5	71
36.765	6	83
	76.204 74.287 69.723 53.764 42.579 38.61 37.546	76.204 6 74.287 6 69.723 6 53.764 6 42.579 6 38.61 6 37.546 5

- Disappearance of residue DM appears to follow exponential decay ∴ first-order kinetics apply
- Can determine the rate (k) of decay under each tillage practice by In transforming the % remaining and using linear regression
- Only time intervals where degradation has occurred can be used
- LSD indicates time intervals > 57 should be excluded

Repeated Measures Response Index Example – Corn Residue

SAS code for regression analysis

```
data means; set means;
                                  Using the means output from GLM to
if days > 57 then delete;
                                 create dataset with In-transformed
lnprct = log(lsmean);
                                 variable
day = input(days, best5.);
run;
                Using PROC MIXED to calculate and
proc mixed;
                 compare regression parameters
class tillage;
model lnprct = tillage tillage*day / solution noint;
estimate 'Chisel intercept' tillage 1;
estimate 'Chisel rate' tillage*day 1;
estimate 'No-till intercept' tillage 0 1;
estimate 'No-till rate' tillage*day 0 1;
estimate 'Chisel v No-till intercept' tillage 1 -1;
estimate 'Chisel v No-till rate' tillage*day 1 -1;
```

Repeated Measures Response Index Example – Corn Residue

Estimates								
Label	Estimate	Standard Error	DF	t Value	Pr > t			
Chisel intercept	4.6436	0.07074	8	65.64	<.0001			
Chisel rate	-0.01134	0.002129	8	-5.32	0.0007			
No-till intercept	4.6053	0.07074	8	65.10	<.0001			
No-till rate	-0.01986	0.002129	8	-9.33	<.0001			
Chisel v No-till intercept	0.03839	0.1000	8	0.38	0.7112			
Chisel v No-till rate	0.008523	0.003011	8	2.83	0.0221			

- The relative degradation rate differed between tillage systems and was nearly twice as fast under No-till than Chisel plow
- The units of k are 1/days but can be interpreted as percent per day by multiplying by 100; 1.1%/day vs 2.0%/day
- Using In-linear regression over the time intervals provides much more insight into the process than evaluating the mean responses

Repeated Measures Multivariate Approach

$$Var\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_2^2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{bmatrix}$$

